Ultrafast Lasers: A Comprehensive Introduction to Fundamental Principles with Practical Applications (Graduate Texts in Physics) (Hardcover)

Ultrafast Lasers: A Comprehensive Introduction to Fundamental Principles with Practical Applications (Graduate Texts in Physics) By Ursula Keller Cover Image

Ultrafast Lasers: A Comprehensive Introduction to Fundamental Principles with Practical Applications (Graduate Texts in Physics) (Hardcover)

$149.99


Not On Our Shelves—Ships in 1-5 Days

Linear pulse propagation in dispersive media.- linear pulse propagation.- dispersion compensation.- nonlinear pulse propagation.- relaxation oscillations in lasers.- Q-switching.- active modelocking.- passive modelocking: generation of ultrashort laser pulses.- pulse duration measurements.- noise characterization of pulsed laser signals.- applications of short-pulse lasers.- appendices.- index.

Ursula Keller, a tenured professor of physics at ETH Zurich since 1993, leads the Ultrafast Laser Physics group, and currently also serves as a director of the Swiss multi-institute NCCR MUST excellence program in ultrafast science since 2010. Born 1959 in Zug, Switzerland, she received the Physics Diplom from ETH Zurich in 1984 and the Ph.D. in Applied Physics from Stanford University, USA in 1989. She was a Member of Technical Staff (MTS) at AT&T Bell Laboratories in New Jersey from 1989 to 1993. She was a "Visiting Miller Professor" at UC Berkeley in 2006 and a visiting professor at the Lund Institute of Technologies in 2001. She has been a co-founder and board member for Time-Bandwidth Products since 1995 and for GigaTera from 2000 to 2003, a venture capital funded telecom company during the "bubble phase" which was acquired by Time-Bandwidth in 2003. Time-Bandwidth Products was acquired by JDSU in 2014. Her research interests are exploring and pushing the frontiers in ultrafast science and technology. She invented the semiconductor saturable absorber mirror (SESAM) which enabled passive modelocking of diode-pumped solid-state lasers and established ultrafast solid-state lasers for science and industrial applications. She pushed the frontier of few-cycle pulse generation and full electric field control at petahertz frequencies. Pioneered frequency comb stabilization from modelocked lasers, which was also noted by the Nobel committee for Physics in 2005. In time-resolved attosecond metrology she invented the attoclock which measured the electron tunneling delay time and observed the dynamical Franz-Keldysh effect in condensed matter for the first time. Awards include the SPIE Gold Medal (2020) - SPIE's highest honor, OSA Frederic Ives Medal/Jarus W. Quinn Prize (2020) - OSA's highest award for overall distinction in optics, IEEE Edison Medal (2019), European Inventor Award for lifetime achievement (2018), IEEE Photonics Award (2018), ERC advanced grants (2012 and 2018), OSA Charles H. Townes Award (2015), LIA Arthur L. Schawlow Award (2013), EPS Senior Prize (2011), OSA Fraunhofer/Burley Prize (2008), Leibinger Innovation Prize (2004), and Zeiss Research Award (1998). OSA, SPIE, IEEE, EPS and IAPLE Fellow, member of the U.S. National Academy of Sciences, Royal Swedish Academy of Sciences, German Academy Leopoldina and Swiss Academy of Technical Sciences. She supervised and graduated 87 Ph.D. students, publish^480 journal publications.
Product Details ISBN: 9783030825317
ISBN-10: 3030825310
Publisher: Springer
Publication Date: March 8th, 2022
Pages: 800
Language: English
Series: Graduate Texts in Physics